- I. Determine whether the relation of $\{(x, y) \in R \text{ if } x \ge y\}$ is *reflexive*, *symmetric*, *antisymmetric*, *transitive*, and/or *a partial order*.
- II. Let X be the set of all four-bit strings (e.g., 0011, 0101, and 1000). Define a relation R on X as $s_1R s_2$ if some substring of s_1 of length 2 is equal to some substring of s_2 of length 2. Example: 0111 R 1010 (because both 0111 and 1010 contain 01). 1110 $\sim R$ 0001 (because 1110 and 0001 do not share a common substring of length 2). Is this relation *reflexive*, *symmetric*, *antisymmetric*, *transitive*, and/or *a partial order*?
- III. Let R_1 and R_2 be the relations on $\{1, 2, 3, 4\}$ given by $R_1 = \{(1,1), (1,2), (3,4), (4,2)\}$ $R_2 = \{(1,1), (2,1), (3,1), (4,4), (2,2)\}$ List the elements of $R_1 \circ R_2$ and $R_2 \circ R_1$.
- IV. Determine whether the given relation is an equivalence relation on {1, 2, 3, 4, 5}. If the relation is an equivalence relation, list the equivalence classes.

(a) $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (3, 1), (3, 4), (4, 3)\}$ (b) $\{(x, y) | 4 \text{ divides } x - y\}$

- V. $R_1 = \{(x, y) | x + y \le 6\}; R_1 \text{ is from } X \text{ to } Y;$ $R_2 = \{(y, z) | y = z + 1\}; R_2 \text{ is from } Y \text{ to } Z;$ $X = Y = Z = \{1, 2, 3, 4, 5\}$
 - (a) Write each of the relations R_1 and R_2 in the **matrix forms**. (A_1 and A_2)
 - (b) Find the **matrix product** A_1A_2 .
 - (c) Use the product matric to write the **relation of** $R_2 \circ R_1$.